Theory of Springs
—L_

12.1 Springs

The springs are the elastic members which deformed due to load and regain its original shape after
rgmoval of load. In spring, materia) Is arranged in such a way that it can undergo a considerable change of shape,
without getting Permanently distorted, A Spring is used to absorb energy in the form of resilience which may be
restored when required, The Quality of a spring Is judged from the energy it can absorb and the natural frequency

of oscillation. Natural frequency of oscillation should not be equal to the operating frequency of system otherwise
resonance will take place.

122 Types of Springs
There are two types of springs:
() Bending springs
(i) Torsional springs

w w
12.2.1 Bending Springs ¢ 2
J Bending springs are the springs subjected to the bending J
moment only.
. The energy stored in bending spring is only. due to s
bending. f
] Examples: Laminated springs or leaf springs. w
. " Fig. 12. ’
12.2.2 Torsional Spring 1g. 12.1 Leaf spring

. Torsional springs are the springs subjected to the torsional moment only.
. The energy stored in torsional springs is only due to torsion.
o Examples: Open coil and closed coil helical springs.




12.2.3 Helical Spring

There are two types of helical springs:
()  Closed coiled helical springs
(i)  Open coiled helical springs

(i) Closed coiled helical spring

In closed coiled helical springs, the wire or rod is wound closely in such a way that
the pitch between two consecutive coil is very small. Closed coiled helical springs can be
subjected to axial pull or axial twist.

Let spring is made of circular rod of length L, A is the mean radius of spring and d
is diameter of rod from which spring is made. Also nis no. of turns in the spring.

Hence L = 2rnRn

Let spring is subjected to axial force P which acts through the centre of spring.
Hence due to force P, there will be a torque T= PRand shear force Pon the section of metal
rod. Let Ais inner surface of spring and B is outer surface of spring.
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Fig. 12.4

At the section of spring shear stresses are produced due to torque and shear force. Let shear stress due
totorque is T, and average shear stress due to shear is 1,
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Since effect of shear force as compared to torque is negligible hence spring is called torsional spring.

Strain energy stored in closed coiled spring

The strain enerqy stored in closed coiled helical spring will be due to torsion only.
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The axial deflection of spring under load P
According to Castigliano's theorem
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Stiffness of closed coil spring

The load required to produce a unit deflection in a spring is called stiffness of spring.
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If kis coefficient

m A closed coil spring of mean diameter 80 mm is made of the high tensile
rod of 10 mm diameter. Determine (i) shear stress (ii) axial deflection and (ijii) stiffness of spring. When

spring is subjected to axial load of 200 N. Take G = 82 GPa and number of turns is 18

Solution:
Mean dia D=80mm
. Mean radius A= 40mm
Diameter of rod = 10 mm
G = 82 x 10° N/mm?
16PR 16x200x 40
(i) Shear stress, T & . —_

oy oo = 40.74 N/mm?
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(i) Axial deflection, = 17.98 mm

. P 200
(iii) Stiffness, k= A~ 1708 ° 11.12 N/mm
(ii) Open coiled helical spring subjected to axial load
’ In this case, load P will cause both twisting and bending of coils.

Deflection of spring due to axial load
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where,  d=diameter of spring wire or rod
R = mean radius of spring coil
p = pitch of spring coil -
n = number of turns or coils -
G = modulus of rlgldlty-fomprlng matéﬁ‘a
o = angle of helix '
E = Young's modulus

Bending Stress
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Shear stress

g

‘An open. coiled helical fspnng madé“’qt 10° mm i eter steel rod of mean
coil radius 50 mm and angle of helix 22° is subjected to an axnal Ioad P, Determme magnitude of load P
if the maximum shear stress in wire due to torque is limited to’ 135Nﬁhﬁ12% Calculate number of turns in
the spring if axial extension in the spring under the load P is 40 mm. Take G =80 kN/mm? and
E = 210 KN/mm?Z.

Solution:
d = 10mm
R = 50mm
o = 22
Toax = 199 N/mm?2
A = 40mm
P = Load
16PRcosa
We know, 17 = —F

max nd3




16P x 50 x cos22°

=
= - nx10°
- . P = 571.78N
'Haxial extension in spring is 40 mm,
. 64PR° n.seca cosza+25in2a
- a G E
= 64 x571.78 x 50° sec 22° c05222°+ 2sin? 22°Jn
0 = 10°* 80x10° 210x10°
= n=673~7

12.3 Springs in Séries and Parallel

1.

Spring in series: If springs are in series, then force in each spring will be equal

Then, total extension, A=A+4
. e P
KT K,
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Where k,, k, are individual stiffness of springs and k,, is equivalent stiffness of
combination.

Springs in parallel: In parallel combination, force developed in each spring will
be different but deflection in each spring will be equal. Let Pis total force which

is shared by spring 1 and 2

k. P, Ky, P,
P
Fig. 12.7
P=P;+F;
Ko = kA + KA

K=k + Ky |

P
Fig. 12.6
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m For the beam shown below, the equivalent spring stiffness of the system is

(a) =l + 2k
P
I 1
©) 3£ * 5%
Ans. (a)

Stiffness is defined as the force required to produce unit displacemeht. :

Equivalent stiffness of system
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Hence equivalent stiffness of system is given by
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[ Springs in parallel]




Leaf Spring w2
Leaf s

vithout an\a. t;s TQS are made from number of overlapping plates

e ¥ DONa between them. Al plates are initially bent to the

same radius a »
sa < us and free to slide over each other. Generally, leaf springs
are loaded atends and supported at centre '

Maximum bending moment at centre = —-x - = ¥/ ] Ib
2 4 .
=—I l 1
Bending moment resisted by each plate = W—I Where, I = Span of spring
. an t = Thickness of each plates
Maximum bending stress developed in each plate b = Width of plates
n = Number of plates
3 wi W = Load acting on the spring
= 5 p E.= Young's modulus

. Fig. 12.8

Since each plate will bend about its own neutral axis. Hence each plate willbein tension and compression.
Maximum Deflection: The maximum deflection will occur at the ends (i.e., under the point of loading)
2 ;

From geometry, &= % )
By bendi t o_E
y bending equation il
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1 & | ¢
Putting value of 7 into (i), we.get
2 Obfss §B5 74
T 8yE ...(i)
3 Wi
For 8. Ymax = 5 and O, =En_btz_
From (ii), we get
3 wr_ ,
e = =
BXLXE 4xtxE
2
_3we
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h Bending moment and shear force both are developed on the section, but effect of Bending

Thou
N ence it is called bending spring.

Moment is more than the shear force. H



A leaf spring is made of plates 50 mm wide and 8 mm thick. The spring hasﬁ
a span of 700 mm. Determine the number of plates required to carry a central load of 45 kN. The

maximum allowable stress in the plate is 200 N/mm?2. What is the maximum deflection under this load.

Solution:
L = 700 mm
W=45kN =45 x 103N
t=8mm
G, o # 200 N/mm?
We know, Orax = %nv:jﬂt—z
o 3, 48XI0KTO0
- 27 nx50x8& '
ns= _74 plates
Maximum deflection under the central load, B | |
3w 3 46x10° x 700° o7
Orax = 8rbE = 8\ 74x50x8° x200x10° ) © 180 MR
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