

1

JAVA PROGRAMMING NOTES(R19)

 (A0507194)

Rajeev Gandhi Memorial College of Engineering and

Technology

Department of Computer Science and Engineering

II B.Tech ïII SEM CSE (R19)

 UNIT -1
Introduction To Java ï Introduction to OOP, OOP Concepts, History of Java, Java

buzzwords, How Java differs from C and C++, Structure of Java Program, data types,

variables, constants, type conversion and casting, enumerated types, scope and life time

of variables, operators, expressions , control statements, command line arguments ,

arrays.

Java Programming

Dept of CSE,RGMCET Page 2

Introduction to OOPS:

Acronym of OOP: Object Oriented Programming.

Languages like Pascal, C, FORTRAN, and COBOL are called procedure oriented

programming languages Since in these languages, a programmer uses procedures or functions

to perform a task When the programmer wants to write a program, he will first divide the task

into separate sub tasks, each of which is expressed as functions/ procedures This approach is

called procedure oriented approach.

The languages like C++ and Java use classes and object in their programs and are

called Object Oriented Programming languages The main task is divided into several modules

and these are represented as classes Each class can perform some tasks for which several

methods are written in a class This approach is called Object Oriented approach

Points to be noted:
ǒ Focuses on objects and data

ǒ It provides security.

ǒ Bottom-Up approach.

ǒ Implements real world entities like objects,classes etc.

ǒ Fast and easier to execute.

ǒ Code reusability

OOP Concepts:
There are 6 OOP Concepts:

ǒ Object.

ǒ Class.

ǒ Polymorphism.

ǒ Inheritance.

ǒ Encapsulation.

ǒ Abstraction.

Classes:
Classes and objects are the two main aspects of object-oriented programming.

Class: It is a user-defined blueprint or prototype from which objects are created.

Or

A collection of objects is called Class.

ǒ It represents the set of properties or methods that are common to all objects of one type.

ǒ Class is a logical entity.

ǒ It doesnôt consume any space.

Java Programming

Dept of CSE,RGMCET Page 3

ǒ Eg: Car, Fruit, Birds etc

In object-oriented programming, a class is a programming language construct that is used as a

blueprint to create objects. This blueprint includes attributes and methods that the created objects

all share Usually, a class represents a person, place, or thing - it is an abstraction of a concept

within a computer program Fundamentally, it encapsulates the state and behavior of that which it

conceptually represents It encapsulates state through data placeholders called member variables;

it encapsulates behavior through reusable code called methods.

Syntax:
class <class_name>

{

Properties (variables);

Actions (methods);

}

eg: class Student{

int rollNo; //properties -- variables

String name;

void display () { //methods ïactions

System.out.println ("Student Roll Number is: " + rollNo);

System.out.println ("Student Name is: " + name);

}

}

Note:

Java Programming

Dept of CSE,RGMCET Page 4

ǒ Variables inside a class are called as instance variables.

ǒ Variables inside a method are called as method variables.

Object:
ǒ An instance of class is called object.

Or

ǒ Any entity that has state and behavior is known as an object.

ǒ An object contains an address and takes up some space in memory.
Ex:

Car

Rolls Royce

Audi

Ferrari

Polymorphism:
ǒ If one task is performed in different ways, it is known as polymorphism.

ǒ Polymorphism is a Greek Word i.e ñPoly-many Morphism-different formsò.

ǒ In Java, we use method overloading and method overriding to achieve polymorphism.

Ex:

Inheritance:
ǒ When one object acquires all the properties and behaviors of a parent object, it is known

as inheritance.

ǒ Creates new class from existing class.Super class/Base class ---> Parent class, Sub class -

--> Child class.

Java Programming

Dept of CSE,RGMCET Page 5

ǒ ñextendsò keyword is used to inherit base class properties & methods to child class.

ǒ It uses an IS-A relationship.

ǒ Types of inheritances:

1. Single

2. Multilevel

3. Hierarchical

4. Multiple

5. Hybrid

Note: Multiple inheritance in Java is not supported using classes.

Advantages:
1. Code reusability.

2. Runtime polymorphism(Method Overriding).

Ex:

Encapsulation:
ǒ Wrapping up of code and data in to sing unit is called encapsulation.

Advantages:
1. Data hiding.

2. Easy to test.

ǒ Ex: Java Bean.

Java Programming

Dept of CSE,RGMCET Page 6

Abstraction:
ǒ Hiding the implementation details & showing only functionality.

ǒ Can achieve by using abstract class & interface.

Advantages:
1. Reduces complexity.

2. Increases security.

ǒ Ex: ATM

History of Java:

Important points:
ǒ James Gosling, Chris Wart, Ed Frank, Mike Sheridan , and Patrick Naughton

initiated the Java language project in June 1991. The small team of sun engineers called

Green Team.

ǒ Bill Joy, Arthur Van Hoff, Jonathan Payne, Payne Yellin and Tim were key Contributors.

ǒ From C, Java derives syntax & OOP features from C++.

ǒ Firstly, it was named as ñGreen Talkò later as ñOAKò by Green project.

ǒ In 1995 renamed as ñJAVAò because OAK is already a trademark of OAK tech.

ǒ Initially developed by James Gosling at Sun Microsystems and released in 1991.

ǒ Provides WORA (Write Once, Run Anywhere).

ǒ James Gosling developed Suitable Language, Patrick Naughton developed Graphics,

Bill Joy developed Web Browser.

ǒ 1st version of Java 1.0 released on 1996.

Brief History:
In 1990, Sun Micro Systems Inc (US) was conceived a project to develop software for

consumer electronic devices that could be controlled by a remote This project was called

Java Programming

Dept of CSE,RGMCET Page 7

Stealth Project but later its name was changed to Green Project In January 1991, Project

Manager James Gosling and his team members Patrick Naughton, Mike Sheridan, Chris

Wrath, and Ed Frank met to discuss about this project Gosling thought C and C++ would

be used to develop the project But the problem he faced with them is that they were

system dependent languages The trouble with C and C++ (and most other languages) is

that they are designed to be compiled for a specific target and could not be used on

various processors, which the electronic devices might use James Gosling with his team

started developing a new language, which was completely system independent This

language was initially called OAK Since this name was registered by some other

company, later it was changed to Java James Gosling and his team members were

consuming a lot of coffee while developing this language Good quality of coffee was

supplied from a place called ñJava Island Hence they fixed the name of the language as

Java The symbol for Java language is cup and saucer Sun formally announced Java at

Sun World conference in 1995 On January 23rd 1996, JDK10 version was released.

Java is a Platform independent language.
ǒ Java is an Object Oriented Language, used to develop Internet applicationations.

ǒ Provides security against eavesdropping, tampering, impersonation.

JVM(Java Virtual Machine): It is a specification that provides a runtime

environment in which Java bytecode can be executed.

What is JVM?

1. It is a A specification where the working of Java Virtual Machine is specified. But the

implementation provider is independent to choose the algorithm. Its implementation has

been provided by Oracle and other companies.

2. It is an implementation known as JRE (Java Runtime Environment).

3. It is a Runtime Instance Whenever you write java command on the command prompt to

run the java class, an instance of JVM is created.

What it does
Main tasks of JVM are:

ƺ Loads code

ƺ Verifies code

ƺ Executes code

ƺ Provides runtime environment

JVM provides definitions for the:

ƀ Memory area

ƀ Class file format

ƀ Register set

ƀ Garbage-collected heap

Java Programming

Dept of CSE,RGMCET Page 8

ƀ Fatal error reporting etc.

JVM Architecture

Let's understand the internal architecture of JVM. It contains classloader, memory area, execution engine etc.

Java Programming

Dept of CSE,RGMCET Page 9

1.Classloader

First of all, the .java program is converted into a . class file consisting of byte code instructions by the

Java compiler. Remember, this Java compiler is outside the JVM.

 Now this class file is given to the JVM. In JVM, there is a module (or program) called class loader sub

system, which performs the following functions:

ǒ First of all, it loads the .class file into memory.

ǒ Then it verifies whether all byte code instructions are proper or not. If it finds any instruction

suspicious, the execution is rejected immediately.

ǒ Then it verifies whether all byte code instructions are proper or not. If it finds any instruction

suspicious, the execution is rejected immediately.

ǒ If the byte instructions are proper, then it allocates necessary memory to execute the program.

This memory is divided into 5 parts, called run time data areas, which contain the data and results

while running the program.

These areas are as follows:

Classloader is a subsystem of JVM which is used to load class files. Whenever we run the java program, it is

loaded first by the classloader. There are three built-in classloaders in Java.

1. Bootstrap ClassLoader: This is the first classloader which is the super class of Extension classloader.

It loads the rt.jar file which contains all class files of Java Standard Edition like java.lang package

classes, java.net package classes, java.util package classes, java.io package classes, java.sql package

classes etc.

2. Extension ClassLoader: This is the child classloader of Bootstrap and parent classloader of System

classloader. It loades the jar files located inside $JAVA_HOME/jre/lib/ext directory .

3. System/Application ClassLoader: This is the child classloader of Extension classloader. It loads the

classfiles from classpath. By default, classpath is set to current directory. You can change the

classpath using "-cp" or "-classpath" switch. It is also known as Application classloader.

These are the internal classloaders provided by Java. If you want to create your own classloader, you need to

extend the ClassLoader class.

2. Class(Method) Area
ǒ Method area is the memory block, which stores the class code, code of the

ǒ variables, and code of the methods in the Java program. (Method means functions written in a

class)

ǒ Class(Method) Area stores per-class structures such as the runtime constant pool, field and method

data, the code for methods.

3. Heap

ǒ This is the area where objects are created. Whenever JVM loads a class, a method and a

heap area are immediately created in it.

ǒ It is the runtime data area in which objects are allocated.

Java Programming

Dept of CSE,RGMCET Page 10

4. Stack

ǒ Method code is stored on Method area. But while running a method, it needs. some more

memory to store the data and results. This memory is allotted on Java stacks.

ǒ So, Java stacks are memory areas where Java methods are executed. While executing

methods, a separate frame will be created in the Java stack, where the method is

executed. JVM uses a separate thread (or process) to execute each method.

5. Program Counter Register

These are the registers (memory areas), which contain memory address of the instructions of the

methods. If there are 3 methods, 3 PC registers will be used to track the instructions of the

methods.

6. Native Method Stack

Java methods are executed on Java stacks. Similarly, native methods (for example C/C++ functions) To

execute the native are executed on Native method stacks. methods, generally native method libraries (for

example C/C++ header files) are required. These header files are located and connected to JVM by a

program, called Native method interface.

7. Execution Engine

ǒ Execution engine contains an interpreter and JIT (Just In Time) compiler, which are

responsible for converting the byte code instructions into machine code so that the

processor will execute them.

ǒ Most of the JVM implementations use both the interpreter and JIT compiler

simultaneously to convert the byte code. This technique is also called adaptive

optimizer.

It contains:

1. A virtual processor

2. Interpreter: Read bytecode stream then execute the instructions.

3. Just-In-Time(JIT) compiler: It is used to improve the performance. JIT compiles parts

of the byte code that have similar functionality at the same time, and hence reduces the

amount of time needed for compilation. Here, the term "compiler" refers to a translator

from the instruction set of a Java virtual machine (JVM) to the instruction set of a

specific CPU.

8. Java Native Interface

Java Native Interface (JNI) is a framework which provides an interface to communicate with another

application written in another language like C, C++, Assembly etc. Java uses JNI framework to send output to

the Console or interact with OS libraries.

Java Programming

Dept of CSE,RGMCET Page 11

JRE(Java Runtime Environment):

ǒ Set of software tools which are used for developing Java applications.

ǒ It is used to provide the runtime environment.

ǒ It is the implementation of JVM.

ǒ I

t

p

h

y

s

i

c

a

l

l

y

e

xists.

It also includes:

ƀ Technologies which get used for deployment such as Java Web Start.

ƀ Toolkits for user interface like Java 2D.

ƀ Integration libraries like Java Database Connectivity (JDBC) and Java Naming and

Directory Interface (JNDI).

ƀ Libraries such as Lang and util.

ƀ Other base libraries like Java Management Extensions (JMX), Java Native Interface (JNI)

Java Programming

Dept of CSE,RGMCET Page 12

and Java for XML Processing (JAX-WS).

JDK(Java Development Kit)
ǒ Used to develop Java Applications & Applets.

ǒ It physically exists.

ǒ JDK is an implementation of any one of the below given Java Platforms.

ƺ Standard Edition Java Platform

ƺ Enterprise Edition Java Platform

ƺ Micro

Edition Java Platform

Differences between JDK, JRE, JVM

ǒ JDK ï Java Development Kit (in short JDK) is Kit which provides the environment to

develop and execute(run) the Java program. JDK is a kit(or package) which includes

two things

1. Development Tools(to provide an environment to develop your

java programs)

2. JRE (to execute your java program).

ǒ Note : JDK is only used by Java Developers.

ǒ JRE ï Java Runtime Environment (to say JRE) is an installation package which

provides environment to only run(not develop) the java program(or application)onto

your machine. JRE is only used by them who only wants to run the Java Programs i.e.

end users of your system.

ǒ JVM ï Java Virtual machine(JVM) is a very important part of both JDK and JRE

because it is contained or inbuilt in both. Whatever Java program you run using JRE

or JDK goes into JVM and JVM is responsible for executing the java program line by

Java Programming

Dept of CSE,RGMCET Page 13

line hence it is also known as interpreter

Java Installation:

Step 1: Go to link. Click on JDK Download for Java JDK 8 download.

Step 2: Next,

ǒ Accept License Agreement

ǒ Download Java 8 JDK for your version 32 bit or JDK 8 download for windows 10 64 bit.

https://www.oracle.com/java/technologies/javase-downloads.html

Java Programming

Dept of CSE,RGMCET Page 14

 Step 3:

When you click on the Installation link the popup will be open. Click on I reviewed and accept

the Oracle Technology Network License Agreement.

Step 4: Once the Java JDK 8 download is complete, run the exe for install JDK. Click Next

Step 5: Select the PATH to install Java in Windowsé You can leave it Default. Click next.

Java Programming

Dept of CSE,RGMCET Page 15

Step 6: Once you install Java in windows, click Close

Java Programming

Dept of CSE,RGMCET Page 16

How to set Environment Variables in Java: Path and

Classpath

The CLASSPATH variable gives location of the Library Files.

Step 1: Right Click on the My Computer and Select the properties

Step 2: Click on advanced system settings

Step 3: Click on Environment Variables

Java Programming

Dept of CSE,RGMCET Page 17

Step 4 Click on new Button of User variables

Step 5: Type PATH in the Variable name.

Step 6: Copy the path of the bin folder which is installed in JDK folder.

Java Programming

Dept of CSE,RGMCET Page 18

Step 7: Paste Path of bin folder in Variable value. Click on OK Button.

Note: In case you already have a PATH variable created in your PC, edit the PATH variable to

PATH = <JDK installation directory> \bin;%PATH%;

Step 8: You can follow a similar process to set CLASSPATH.

Java Programming

Dept of CSE,RGMCET Page 19

Step 9: Click on OK button

Step 10: Go to command prompt and type javac command. List of options are displayed on

successful installation.

Java Programming

Dept of CSE,RGMCET Page 20

How Java Differ from C & C++.

Java Programming

Dept of CSE,RGMCET Page 21

C Java

C is a Procedural Programming Language. Java is an Object-Oriented language.

C was developed by Dennis M. Ritchie in

1972.

Java language was developed by James

Gosling in 1995.

It is a middle-level language as it is binding

the gaps between machine level and high-

level languages.

It is a high-level language because the

translation of code takes place into machine

language, which uses a compiler or

interpreter.

In the C declaration variables are declared at

the beginning of the block.

In Java, you can declare a variable anywhere.

Free is a variable used for freeing the memory

in C.

A compiler will free up the memory by

calling the garbage collector.

C does not support threading. Java has a feature of threading.

C support pointers. Java does not support pointers.

Memory allocation can be done by malloc. Memory allocation can be done by a new

keyword.

Garbage collectors need to manage manually. In Java, it is automatically managed by a

garbage collector

C does not have a feature of overloading

functionality.

Java supports method overloading.

Java Programming

Dept of CSE,RGMCET Page 22

C offers support for call by value and call by

reference.

Java only supports a call by value.

Structure of Java Program:
ǒ Comment level section.

ǒ Package section.

ǒ Import section.

ǒ Class or interface section.

ǒ Class with main method.

Comment level section:
Java has 3 types of comments:

ǒ Single line comments. (// Single line comment)

ǒ Multiline comments. (/* Hello multiline

 -------------------*/)

ǒ Document level comments. (/** javadoc provides documentation level comments*/)

Package level section:

ǒ Collection of similar types packages, interfaces and subpackages.

ǒ Two types of packages:

1. User-defined packages.

2. Predefined packages/Built-in package.

ǒ Built-in packages are java, lang, awt, javax, io, util, etc.

ǒ package is a keyword in java

Syntax: package package-name;

Ex: package mypack;

Import section:
ǒ import is java keyword.

ǒ The import statement can be used to import an entire package or sometimes import

certain classes and interfaces inside the package.

Syntax: import package-name;

Ex: import java.util.*;

Java Programming

Dept of CSE,RGMCET Page 23

Class or interface section:
ǒ We can create an interface or class in this section if required. We use the interface or

class keyword to create an interface or class respectively.

Syntax: interface interface_name{---}

Ex: interface abc{

void start();

}

Syntax: class class_name{---}

Ex: class Student {

int a;

}

Class with main method:
ǒ we define the main() method. It is essential for all Java programs. Because the execution

of all Java programs starts from the main() method.

ǒ This method must be inside the class. Here we create objects for class and call methods.

Syntax: public static void main(String args[])

Ex: class Student {

public static void main(String args[]){

 //stmts

}

 }

Simple Java Program:

ǒ Hello.java

Ex: public class Hello {

public static void main(String args[]){

 System.out.println(ñHello Worldò);

}

 }

Compilation: javac Hello.java

Execution: java Hello

Different Notations of main():

ǒ public static void main(String args[]) //default prototype

ǒ static public void main(String[] args) //swap positions

Java Programming

Dept of CSE,RGMCET Page 24

ǒ variant of string array argument:

ƺ public static void main(String[] args)

ƺ public static void main(String []args)

ǒ public static void main(String[] hello) //Instead of args we can write anything which is a

valid java identifier.

ǒ final public static void main(String... args) //var args

ǒ public static void main(final String[] args) //final modifier

ǒ final public static void main(String args[]) //final method

ǒ public synchronized static void main(String[] args) //synchronized keyword

ǒ public strictfp static void main(String[] args) //to restrict floating-point calculations

ǒ final synchronized strictfp public static void main(String[] hello) //combination of all

ǒ main() can be overloaded.

Naming Conventions in Java:
ǒ The class/variable/method names must not contain any white space.

ǒ No special characters (!@#%^&*) are allowed to use in class/variable/method names

except $ and _.

ǒ Class/interface name should start with uppercase letters.

ƺ if the name contains multiple words, the 1st letter of the word must start with an

uppercase letter such as HelloWorld .

ǒ Method names should start with lowercase letters. Ex. start(), stop(), run(), sleep(), etc.

ƺ If the name contains multiple words, start it with a lowercase letter followed by

an uppercase letter such as actionPerformed(), nextLine(), nextInt(),

parseInt(), etc.

ǒ Variable names must start with lowercase, special characters are not allowed.

ƺ If the name contains multiple words, start it with the lowercase letter followed by

an uppercase letter such as firstName, lastName.

ǒ Package name should be a lowercase letter such as java, lang.

ƺ If the name contains multiple words, it should be separated by dots (.) such as

java.util, java.lang.

ǒ Constant should be in uppercase letters such as RED, YELLOW.

ƺ If the name contains multiple words, it should be separated by an underscore(_)

such as MAX_PRIORITY .

ƺ It may contain digits but not as the first letter.

Java Programming

Dept of CSE,RGMCET Page 25

Data Types:

ǒ Data types specify the different sizes and values that can be stored in the variable.

ǒ There are 2 types of data type:

1. Primitive Data Types. (boolean, char, byte,short, long, int, float, double)

2. Non-Primitive Data Types. (Classes, Interfaces, Arrays)

ǒ Why is Java a strongly typed language?

ƺ Java is a strongly typed programming language because every variable must be

declared with a data type.

Boolean Data Type:
ǒ The Boolean data type is used to store only two possible values: true and false. This data

type is used for simple flags that track true/false conditions.

ǒ The Boolean data type specifies one bit of information, but its "size" can't be defined

precisely.

Example: Boolean one = false

Byte Data Type:
ǒ The byte data type is an example of primitive data type. It isan 8-bit signed two's

complement integer. Its value-range lies between -128 to 127 (inclusive). Its minimum

value is -128 and maximum value is 127. Its default value is 0.

ǒ The byte data type is used to save memory in large arrays where the memory savings is

most required. It saves space because a byte is 4 times smaller than an integer. It can also

be used in place of "int" data type.

Example: byte a = 10, byte b = -20

Java Programming

Dept of CSE,RGMCET Page 26

Short Data Type:
ǒ The short data type is a 16-bit signed two's complement integer. Its value-range lies between -32,768

to 32,767 (inclusive). Its minimum value is -32,768 and maximum value is 32,767. Its default value is

0.

ǒ The short data type can also be used to save memory just like byte data type. A short data type is 2

times smaller than an integer.

Example: short s = 10000, short r = -5000

Int Data Type:
ǒ The int data type is a 32-bit signed two's complement integer. Its value-range lies

between - 2,147,483,648 (-2^31) to 2,147,483,647 (2^31 -1) (inclusive). Its minimum

value is - 2,147,483,648and maximum value is 2,147,483,647. Its default value is 0.

ǒ The int data type is generally used as a default data type for integral values unless there is

no problem about memory.

Example: int a = 100000, int b = -200000

Long Data Type:
The long data type is a 64-bit two's complement integer. Its value-range lies between(-2^63)

to(2^63 -1)(inclusive). Its minimum value is - 9,223,372,036,854,775,808and maximum value is

9,223,372,036,854,775,807. Its default value is 0. The long data type is used when you need a

range of values more than those provided by int.

Example: long a = 100000L, long b = -200000L

Float Data Type:
The float data type is a single-precision 32-bit IEEE 754 floating point.Its value range is

unlimited. It is recommended to use a float (instead of double) if you need to save memory in

large arrays of floating point numbers. The float data type should never be used for precise

values, such as currency. Its default value is 0.0F.

Example: float f1 = 234.5f

Double Data Type:
The double data type is a double-precision 64-bit IEEE 754 floating point. Its value range is

unlimited. The double data type is generally used for decimal values just like float. The double

data type also should never be used for precise values, such as currency. Its default value is 0.0d.

Example: double d1 = 12.3

Char Data Type:
The char data type is a single 16-bit Unicode character. Its value-range lies between '\u0000' (or

0) to '\uffff' (or 65,535 inclusive).The char data type is used to store characters.

Example: char letterA = 'A'

Java Programming

Dept of CSE,RGMCET Page 27

Data Type Default Value Default size

boolean False 1 bit

char ' \u0000' 2 byte

byte 0 1 byte

short 0 2 byte

int 0 4 byte

long 0L 8 byte

float 0.0f 4 byte

double 0.0d 8 byte

Java Programming

Dept of CSE,RGMCET Page 28

Variable in Java:

ǒ Variable is a memory location.

ǒ is a container which holds the value while the Java program is executed. A variable is

assigned with a data type.

ǒ There are 3 types of variables:

1. Local variables.

2. Instance variables.

3. Static Variables.

1. Local Variable:
ǒ A variable declared inside the body of the method is called a local variable. You can use

this variable only within that method.

ƀ A local variable cannot be defined with the "static" keyword.

2. Instance Variable:
ǒ A variable declared inside the class but outside the body of the method, is called instance

variable. It is not declared as static.

ǒ It is called instance variable because its value is instance specific and is not shared among

instances.

3. Static variable:
A variable which is declared as static is called static variable. It cannot be local. You can create a

single copy of a static variable and share among all the instances of the class. Memory allocation

for static variables happens only once when the class is loaded in the memory.

Example:

class A{

int data=50;//instance variable

static int m=100;//static variable

void method(){

int n=90;//local variable

}

}

https://www.javatpoint.com/simple-program-of-java

Java Programming

Dept of CSE,RGMCET Page 29

Constants

ǒ Constant is a value that cannot be changed after assigning it.

ƺ Java does not directly support the constants.

ƺ Can define constants in Java by using the non-access modifiers static and final.

Syntax: static final data_type identifier_name=value;

 final data_type identifier_name=value;
ƀ The purpose of using the static modifier is to manage the memory.

ƀ It also allows the variable to be available without loading any instance of the class in

which it is defined.

ƀ The final modifier represents that the value of the variable cannot be changed. It also

makes the primitive data type immutable or unchangeable.

Type Conversion and Casting:

ǒ It is a process that converts a data_type to another data_ type both manually &

automatically.

ƺ The automatic conversion is done by the compiler.

ƺ manual conversion performed by the programmer.

ǒ There are two types type casting:

1. Widening Conversion.

2. Narrowing Conversion.

ǒ Narrowing Conversion: Converts higher data type to lower data type.

ƺ Also known as explicit conversion or casting up.

ƺ This conversion is done by programmer.

ǒ double -> float -> long -> int -> char -> short -> byte

Syntax: dest_data_type var = (src_data_type) var

Example:
 float x = 6;

 int y=(int)x;

Java Programming

Dept of CSE,RGMCET Page 30

Example Program for Widening:
public class WideningTypeCastingExample {

public static void main(String[] args) {

int x = 7;

long y = x;

System.out.println("Before conversion, int value "+x);

System.out.println("After conversion, float value "+z);

}

 }

Output :
Before conversion, the value is: 7

After conversion, the float value is: 7.0

class Test

{

 public static void main(String[] args)

 {

 int i = 100;

 // automatic type conversion

 long l = i;

 // automatic type conversion

 float f = l;

 System.out.println("Int value "+i);

 System.out.println("Long value "+l);

 System.out.println("Float value "+f);

 }

}

Java Programming

Dept of CSE,RGMCET Page 31

Example:

class Simple{

public static void main(String[] args){

int a=10;

float f=a;

System.out.println(a);

System.out.println(f);

}}

Output :

10

10.0

Example Program for Narrowing :
public class WideningTypeCastingExample {

public static void main(String[] args) {

double d = 166.66;

long l = (long)d;

System.out.println("Before conversion: "+d);

System.out.println("After conversion into long type: "+l);

}

 }

Output :
Before conversion: 166.66

After conversion into long type: 166

Example:

class Simple{

public static void main(String[] args){

float f=10.5f;

//int a=f;//Compile time error

int a=(int)f;

System.out.println(f);

System.out.println(a);

}}

Output :

10.5

10

Java Programming

Dept of CSE,RGMCET Page 32

Enumerations:

ǒ An enumeration is user defined data type that contains named values. ñenumò keyword

is used to define enumerations.

ǒ It is a list of constants.

ǒ It is same as final variables.

ǒ Introduced from JDK 1.5 version.

Syntax: enum enumeration_name{ identifier1, identifier2 ...}

Ex: enum Car{FORD,TOYOTA,ROLLS_ROYCE}

ǒ Advantages:
1. Increases type safety.

2. Easily applied to control flow statements & switch case statements.

ǒ Methods of Java enum:
1. value() //returns an array containing all the values of the enum.

2. valueOf() //returns the value of given constant enum.

3. Ordinal() //returns the index of the enum value.

Example Program:
class EnumExample1{

public enum Season { WINTER, SPRING, SUMMER, FALL }

public static void main(String[] args) {

for (Season s : Season.values()){

System.out.println(s);

}

System.out.println("Value of WINTER is: "+Season.valueOf("WINTER"));

System.out.println("Index of WINTER is: "+Season.valueOf("WINTER").ordinal());

System.out.println("Index of SUMMER is: "+Season.valueOf("SUMMER").ordinal()); }}

Output :
WINTER

SPRING

SUMMER

FALL

Value of WINTER is: WINTER

Index of WINTER is: 0

Index of SUMMER is: 2

class EnumExample1{ //defining enum within class

public enum Season { WINTER, SPRING, SUMMER, FALL }

Java Programming

Dept of CSE,RGMCET Page 33

public static void main(String[] args) {

//printing all enum

for (Season s : Season.values()){

System.out.println(s);

}

System.out.println("Value of WINTER is: "+Season.valueOf("WINTER"));

System.out.println("Index of WINTER is: "+Season.valueOf("WINTER").ordinal());

System.out.println("Index of SUMMER is: "+Season.valueOf("SUMMER").ordinal());

}}

Output:
WINTER

SPRING

SUMMER

FALL

Value of WINTER is: WINTER

Index of WINTER is: 0

Index of SUMMER is: 2

Note: Java compiler internally adds values(), valueOf() and ordinal() methods within the

enum at compile time. It internally creates a static and final class for the enum.

values() method:
The Java compiler internally adds the values() method when it creates an enum. The values()

method returns an array containing all the values of the enum.

valueOf() method:
The Java compiler internally adds the valueOf() method when it creates an enum. The valueOf()

method returns the value of a given constant enum.

ordinal():
The Java compiler internally adds the ordinal() method when it creates an enum. The ordinal()

method returns the index of the enum value.

Defining Java Enum:
The enum can be defined within or outside the class because it is similar to a class. The

semicolon (;) at the end of the enum constants are optional.

Example:

1. enum Season { WINTER, SPRING, SUMMER, FALL }

Or,

1. enum Season { WINTER, SPRING, SUMMER, FALL; }

Both the definitions of Java enum are the same.

Java Programming

Dept of CSE,RGMCET Page 34

Java Enum Example:

Defined outside class
enum Season { WINTER, SPRING, SUMMER, FALL }

class EnumExample2{

public static void main(String[] args) {

Season s=Season.WINTER;

System.out.println(s);

}}

Output:
WINTER

Java Enum Example: Defined inside class
class EnumExample3{

enum Season { WINTER, SPRING, SUMMER, FALL; }//semicolon(;) is optional here

public static void main(String[] args) {

Season s=Season.WINTER;//enum type is required to access WINTER

System.out.println(s);

}}

Output :

WINTER

Java Enum Example: main method inside Enum
If you put the main() method inside the enum, you can run the enum directly.

enum Season {

WINTER, SPRING, SUMMER, FALL;

public static void main(String[] args) {

Season s=Season.WINTER;

System.out.println(s);

}

}

Output:
WINTER

Java Programming

Dept of CSE,RGMCET Page 35

Initializing specific values to the enum constants
ǒ The enum constants have an initial value which starts from 0, 1, 2, 3, and so on.

ǒ But, we can initialize the specific value to the enum constants by defining fields and

constructors.

ǒ Enum can have fields, constructors, and methods.

Example of specifying initial value to the enum constants
class EnumExample4{

enum Season{

WINTER(5), SPRING(10), SUMMER(15), FALL(20);

private int value;

priv ate Season(int value){

this.value=value;

}

}

public static void main(String args[]){

for (Season s : Season.values())

System.out.println(s+" " +s.value);

}}

Output:
WINTER 5

SPRING 10

SUMMER 15

FALL 20

Constructor of the enum type is private. If you don't declare a private compiler, internally create

a private constructor.

enum Season{

WINTER(10),SUMMER(20);

private int value;

Season(int value){

this.value=value;

}

}

Java Programming

Dept of CSE,RGMCET Page 36

Can we create an instance of Enum by a new keyword?

No, because it contains private constructors only.

Can we have an abstract method in the Enum?
Yes, Of course! we can have abstract methods and can provide the implementation of these

methods.

Java Enum in a switch statement
class EnumExample5{

enum Day{ SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY,

SATURDAY}

public static void main(String args[]){

Day day=Day.MONDAY;

switch(day){

case SUNDAY:

 System.out.println("sunday");

 break;

case MONDAY:

 System.out.println("monday");

 break;

default:

System.out.println("other day");

}

}}

Output:
monday

Scope & lifetime of a variables

ǒ Scope and lifetime are closely related but they are diff. Concepts.

ǒ Scope of a variable is from point of declaration to end of block

Java Programming

Dept of CSE,RGMCET Page 37

Local Variable
Local Variable is defined as a type of variable declared within a programming block . It can

only be used inside the code block in which it is declared. The local variable exists until the

block of the function is under execution. After that, it will be destroyed automatically.

Example of Local Variable

public int add(){

int a =4;

int b=5;

return a+b;

}

Here, 'a' and 'b' are local variables

Global Variable
A Global Variable in the program is a variable defined outside the method. It has a global scope

means it holds its value throughout the lifetime of the program. Hence, it can be accessed

throughout the program by any function defined within the program, unless it is shadowed.

Example:

int a =4;

int b=5;

public int add(){

return a+b;

}

Instance Variable

ǒ A variable declared inside the class but outside the body of the method, is called instance

variable. It is not declared as static.

ǒ It is called instance variable because its value is instance specific and is not shared among

instances.

Static variable

https://www.javatpoint.com/static-keyword-in-java

Java Programming

Dept of CSE,RGMCET Page 38

A variable which is declared as static is called static variable. It cannot be local. You can create a single copy

of a static variable and share among all the instances of the class. Memory allocation for static variables

happens only once when the class is loaded in the memory.

Java Variable Example: Overflow

class Simple{

public static void main(String[] args){

//Overflow

int a=130;

byte b=(byte)a;

System.out.println(a);

System.out.println(b);

}}

Output :

130

-126

Java Variable Example: Adding Lower Type

class Simple{

public static void main(String[] args){

byte a=10;

byte b=10;

//byte c=a+b;//Compile Time Error: because a+b=20 will be int

byte c=(byte)(a+b);

System.out.println(c);

}}

Output: 20

Operators:

ǒ It is a symbol used to perform operations on operands.

Operators in Java:
ƀ Unary Operator.

ƀ Arithmetic Operator.

ƀ Shift Operator.

ƀ Relational Operator.

Java Programming

Dept of CSE,RGMCET Page 39

ƀ Bitwise Operator.

ƀ Logical Operator.

ƀ Ternary Operator.

ƀ Assignment Operator.

Unary Operator
The Java unary operators require only one operand. Unary operators are used to perform various

operations i.e.:

ƀ incrementing/decrementing a value by one

ƀ negating an expression

ƀ inverting the value of a boolean

Unary Operator Example: ++ and --
class OperatorExample{

public static void main(String args[]){

int x=10;

System.out.println(x++);//10 (11)

System.out.println(++x);//12

System.out.println(x--);//12 (11)

System.out.println(--x);//10

}}

Output:

10

12

12

10

Unary Operator Example 2: ++ and --
class OperatorExample{

public static void main(String args[]){

int a=10;

int b=10;

System.out.println(a++ + ++a);//10+12=22

System.out.println(b++ + b++);//10+11=21

}}

Java Programming

Dept of CSE,RGMCET Page 40

Output:

22

21

Unary Operator Example: ~ and !
class OperatorExample{

public static void main(String args[]){

int a=10;

int b=-10;

boolean c=true;

boolean d=false;

System.out.println(~a);//-11 (minus of total positive value which starts from 0)

System.out.println(~b);//9 (positive of total minus, positive starts from 0)

System.out.println(!c);//false (opposite of boolean value)

System.out.println(!d);//true

}}

Output :

-11

9

false

true

Arithmetic Operators
Java arithmetic operators are used to perform addition(+), subtraction(-), multiplication(*), and

division(/).

Arithmetic Operator Example

class OperatorExample{

public static void main(String args[]){

int a=10;

int b=5;

System.out.println(a+b);//15

System.out.println(a-b);//5

System.out.println(a*b);//50

System.out.println(a/b);//2

System.out.println(a%b);//0

}}

Output :

15

5

50

2

0

Java Programming

Dept of CSE,RGMCET Page 41

Arithmetic Operator Example: Expression
class OperatorExample{

public static void main(String args[]){

System.out.println(10*10/5+3-1*4/2);

}}

Output:

21

Left Shift Operator
The Java left shift operator << is used to shift all of the bits in a value to the left side of a

specified number of times.

Left Shift Operator Example

class OperatorExample{

public static void main(String args[]){

System.out.println(10<<2);//10*2^2=10*4=40

System.out.println(10<<3);//10*2^3=10*8=80

System.out.println(20<<2);//20*2^2=20*4=80

System.out.println(15<<4);//15*2^4=15*16=240

}}

Output:

40

80

80

240

Right Shift Operator
The Java right shift operator >> is used to move left operands value to right by the number of

bits specified by the right operand.

Right Shift Operator Example
class OperatorExample{

public static void main(String args[]){

System.out.println(10>>2);//10/2^2=10/4=2

System.out.println(20>>2);//20/2^2=20/4=5

System.out.println(20>>3);//20/2^3=20/8=2

}}

Output:

2

5

2

Java Programming

Dept of CSE,RGMCET Page 42

Shift Operator Example: >> vs >>>
class OperatorExample{

public static void main(String args[]){

 //For positive number, >> and >>> works same

 System.out.println(20>>2);

 System.out.println(20>>>2);

 //For negative number, >>> changes parity bit (MSB) to 0

 System.out.println(-20>>2);

 System.out.println(-20>>>2);

}}

Output :

5

5

-5

1073741819

AND Operator Example: Logical && and Bitwise &
ǒ The logical && operator doesn't check the second condition if the first condition is false.

It checks the second condition only if the first one is true.

ǒ The bitwise & operator always checks both conditions whether the first condition is true

or false.

class OperatorExample{

public static void main(String args[]){

int a=10;

int b=5;

int c=20;

System.out.println(a<b&&a<c);//false && true = false

System.out.println(a<b&a<c);//false & true = false

}}

Output:

false

false

AND Operator Example: Logical && vs Bitwise &
class OperatorExample{

public static void main(String args[]){

int a=10;

int b=5;

int c=20;

System.out.println(a<b && a<c);//false && true = false

System.out.println(a);//10 because second condition is not checked

Java Programming

Dept of CSE,RGMCET Page 43

System.out.println(a<b&a++<c);//false && true = false

System.out.println(a);//11 because second condition is checked

}}

Output:

false

10

false

11

OR Operator Example: Logical || and Bitwise |
The logical || operator doesn't check the second condition if the first condition is true. It checks

the second condition only if the first one is false.

The bitwise | operator always checks both conditions whether the first condition is true or false.

class OperatorExample{

public static void main(String args[]){

int a=10;

int b=5;

int c=20;

System.out.println(a>b||a<c);//true || true = true

System.out.println(a>b|a<c);//true | true = true

//|| vs |

System.out.println(a>b||a++<c);//true || true = true

System.out.println(a);//10 because second condition is not checked

System.out.println(a>b|a++<c);//true | true = true

System.out.println(a);//11 because second condition is checked

}}

Output :

true

true

true

10

true

11

Ternary Operator
Java Ternary operator is used as one linear replacement for if -then-else statement .It is the only

conditional operator which takes three operands.

Ternary Operator Example
class OperatorExample{

public static void main(String args[]){

Java Programming

Dept of CSE,RGMCET Page 44

int a=2;

int b=5;

int min=(a<b)?a:b;

System.out.println(min);

}}

Output:

2

Another Example:

class OperatorExample{

public static void main(String args[]){

int a=10;

int b=5;

int min=(a<b)?a:b;

System.out.println(min);

}}

Output:

5

Assignment Operator
Java assignment operator is one of the most common operators. It is used to assign the value on

its right to the operand on its left.

Assignment Operator Example
class OperatorExample{

public static void main(String args[]){

int a=10;

int b=20;

a+=4;//a=a+4 (a=10+4)

b-=4;//b=b-4 (b=20-4)

System.out.println(a);

System.out.println(b);

}}

Output:

14

16

Assignment Operator Example
class OperatorExample{

public static void main(String[] args){

int a=10;

Java Programming

Dept of CSE,RGMCET Page 45

a+=3;//10+3

System.out.println(a);

a-=4;//13-4

System.out.println(a);

a*=2;//9*2

System.out.println(a);

a/=2;//18/2

System.out.println(a);

}}

Output :

13

9

18

9

Assignment Operator Example: Adding short
class OperatorExample{

public static void main(String args[]){

short a=10;

short b=10;

//a+=b;//a=a+b internally so fine

a=a+b;//Compile time error because 10+10=20 now int

System.out.println(a);

}}

Output :

Compile time error

After type cast:

class OperatorExample{

public static void main(String args[]){

short a=10;

short b=10;

a=(short)(a+b);//20 which is int now converted to short

System.out.println(a);

}}

Output:

20

Expression in Java:

A Java expression consists of variables, operators, literals, and method calls.

Java Programming

Dept of CSE,RGMCET Page 46

Example:
a=b+c*d-2;

res=x+y-3.2;

Control Statements in Java:

Java provides 3 types of control flow statements:
ƀ Decision Making statements.

ƀ Loop statements.

ƀ Jump statements.

Decision Making statements:

1. if statement.

2. if -else statement.

3. else-if statement.

4. Nested if-statement.

5. switch statement.

Simple if statement:

The general form of a simple if statement is

Syntax:

if (test expression){

statement-block;

}

statement-x;

If the test expression is true, the statement-block will be executed and followed by statement-

x; otherwise statement-block will be skipped and the execution will jump to the statement-x.

Example:

if (basic > 5000){

Comm= basic * 0.2;

}

Java Programming

Dept of CSE,RGMCET Page 47

if..else statement:

The general form is

Syntax:
if (test expression){

 //True stmt block

}

else{

//False stmt block

}

statement-x;

Write a Java program to find the greatest of two numbers.

class ifElse_Test{

public static void main(String args[]){

int a=10,b=5;

 if (a>b)

{

System.out.println("a is big");}

else{

System.out.println("b is big");

}

Nested if..else statement:

The general form is as follows:

Syntax:

if (condition-1){

if (condition-2){

statement(s);

} else {

statement(s);

} else

{

if (condition-3)

{

statement(s);

Java Programming

Dept of CSE,RGMCET Page 48

}

else{

statement(s);

}

}

statement-x;

Write a Java program to find the greatest of three numbers.

class NestedIfElseTest{

public static void main(String args[])

{

int a=15, b=10, c=5;

if (a>b) {

if (a>c){

System.out.println("a is big);

}

else{

System.out.println("c is big");

 }

} else

{

if(b>c){

System.out.println("b is big");

}

else{

System.out.println("c is big");

}

}

Java Programming

Dept of CSE,RGMCET Page 49

Else if ladder:

The general form is as follows:

Syntax:
if (condition-1) {

statement(s);

}

else if (condition-2)

{

statement(s);

}

else if (condition-3)

{

 statement(s);

}

...

else

{

default-statement(s);

}

Example:

if (marks > 69)

grade "Distinction";

else if (marks 59)

grade "First";

else if (marks > 49)

grade "second";

else if (marks 39)

grade "third";

else

grade = "fail";

switch statement:
The switch statement tests the values of a given variable (or expression) against a list of case

values and when a match is found, a block of statements associated with that case is executed.

The general form is as follows:

Java Programming

Dept of CSE,RGMCET Page 50

Syntax:
switch (expression){

case value-1:

statement-block-1;

break;

case value-2:

statement-block-2;

break;

éé

default:

 default-block;

} statement-x;

Write a Java program to find the addition, subtraction, multiplication, division depending upon

the choice illustrating switch statement.

class SwitchTest{

public static void main(String args[])

{

int a -40, b-20, c, choice;

choice = 2;

switch(choice){

case 1:

c=a+b;

System.out.println(a+"+"+b+" - "+c);

break;

case 2:

c=a-b;

System.out.println(a+" - "+b+" = "+c);

break;

case 3:

c=a*b;

System.out.println(a+""+b+" = "+c);

break;

case 4:

c=a/b;

System.out.println(a+" / "+b+" = "+c);

break;

default :

System.out.println("Invalid Choice");

}

}

Java Programming

Dept of CSE,RGMCET Page 51

Conditional operator statement:
This statement uses conditional operators. The conditional operators are ó ?' and ó:'.

The general form is as follows:

[Variable =] (conditional expression)? expression1: expression2;

The conditional expression is evaluated first. If the result is true, the expression is evaluated and is

returned as the value of the conditional expression. Otherwise, expression2 is evaluated and its value is

returned.

Example:

if (x<0)

flag = 0;

else

flag = 1;

Can be written as

flag (x<0) ? 0:1;

Write a Java program to find the greatest of two numbers illustrating conditional operator

statements.

class CondOperatorTest

{

public static void main(String args[])

{

int a 10, b=20, c;

c = (a>b) ?a: b;

System.out.println("Greatest Number = "+c);

 }

}

switch statement Fall Through:

It means it executes all statements after the first match if a break statement is not present.
Program:

public class SwitchExample {

public static void main(String[] args) {

 int number=20;

 switch(number){

 case 10: System.out.println("10");

 case 20: System.out.println("20");

Java Programming

Dept of CSE,RGMCET Page 52

 default:System.out.println("Not in 10, 20 or 30");

 }

 }

}

switch statement with String:
ǒ Java allows us to use strings in switch expressions.

ǒ Java SE8 The case statement should be string literal.

Example Program:

public class SwitchExample {

public static void main(String[] args) {

 String levelString="Expert";

 int level=0;

 switch(levelString){

 case "Beginner": level=1;

 break;

 case "Expert": level=3;

 break;

 default: level=0;

 break; }

System.out.println("Your Level is: "+level);

}}

Nested switch Statement:We can use switch statement inside other switch

statements in java.

Syntax:
switch(n){

 case 1: // Nested switch

 switch(num) {

 case 10: statement 1;

 break;

 case 20: statement 2;

 break;

 }

case 2:statement 2;

 break;

 case 3: statement 3;

Java Programming

Dept of CSE,RGMCET Page 53

 break;

 default:

}

enum in switch statement:
Java allows us to use enum in switch stmt.

Ex:
public class JavaSwitchEnumExample {

 public enum Day { Sun, Mon, Tue }

 public static void main(String args[])

 {

 Day[] DayNow = Day.values();

 for (Day Now : DayNow)

 {

 switch (Now){

case Sun: System.out.println("Sunday");

 break;

case Mon:System.out.println("Monday")

 break;

case Tue:System.out.println("Tuesday");

 break;

}

 }

 }

}

Java wrapper in switch statement:

Java allows us to use four wrapper classes: Byte, Short, Integer and Long in switch statement.

Ex:
public class WrapperInSwitchCaseExample {

 public static void main(String args[]) {

 Integer age = 18;

 switch (age) {

 case (16):

 System.out.println("You are under 18.");

 break;

Java Programming

Dept of CSE,RGMCET Page 54

case (18): System.out.println("You are eligible for vote.");

 break;

case (65): System.out.println("You are senior citizen.");

 break;

default: System.out.println("Please give the valid age.");

 break;

 }

 }

}

Loop statements:

1. for loop.

2. while loop. (entry control loop)

3. do-while loop. (exit control loop)

4. for-each loop.

for -each Loop :

for-each loop or enhanced for loop is introduced since J2SE 5.0

Syntax:

for (data_type variable : array | collection)

{

//body of for-each loop

}
Ex:

class ForEachExample1{

 public static void main(String args[]){

 int arr[]={12,13,14,44};

 for (int i:arr){

 System.out.println(i);

 }

 }

}

Java Programming

Dept of CSE,RGMCET Page 55

Loop for while dowhile

Syntax for(init;condition;incr/decr){

// code to be executed

//statments

 }

while(condition){

//code to be executed

}

do{

//code to be executed

}while(condition);

Example

for(int i=1;i<=10;i++){

s.o.p(i);

}

 int i=1;

while(i<=10){

s.o.p(i);

i++;

}

int i=1;

do{

s.o.p(i);

i++;

}while(i<=10);

1. Initialization: It is the initial condition which is executed once when the loop starts.

Here, we can initialize the variable, or we can use an already initialized variable. It is an

optional condition.

2. Condition: It is the second condition which is executed each time to test the condition of

the loop. It continues execution until the condition is false. It must return boolean value

either true or false. It is an optional condition.

3. Statement: The statement of the loop is executed each time until the second condition is

false.

4. Increment/Decrement: It increments or decrements the variable value. It is an optional

condition.

Java Programming

Dept of CSE,RGMCET Page 56

Write a Java Program to find the sum of individual digits.

Using a while loop.

import java.util.Scanner;

public class Digit_Sum

{

 public static void main(String args[])

 {

 int m, n, sum = 0;

 Scanner s = new Scanner(System.in);

 System.out.print("Enter the number:");

 m = s.nextInt();

 while(m > 0)

 {

 n = m % 10;

 sum = sum + n;

 m = m / 10;

 }

 System.out.println("Sum of Digits:"+sum);

 }

}

Using for loop:

class SumOfDigits

{

 public static void main(String arg[])

 {

 long n,s;

 Scanner sc=new Scanner(System.in);

 System.out.println("Enter a number ");

 n=sc.nextLong();

 s=sum(n);

 System.out.println("Sum of digits of a number is "+s);

 }

 static int sum(long num)

 {

 int sum=0;

 while(num!=0)

 {

Java Programming

Dept of CSE,RGMCET Page 57

 sum+=num%10;

 num/=10;

 }

 return sum;

 }

}

Fibonacci series:

class FibonacciExample1{

public static void main(String args[])

{

 int n1=0,n2=1,n3,i,count=10;

 System.out.print(n1+" " +n2);//printing 0 and 1

 for (i=2;i<count;++i) //loop starts from 2 because 0 and 1 are already printed

 {

 n3=n1+n2;

 System.out.print(" " +n3);

 n1=n2;

 n2=n3;

 }

 }

}

Prime Numbers:
public class PrimeExample{

 public static void main(String args[]){

 int i,m=0,flag=0;

 int n=3;//it is the number to be checked

 m=n/2;

 if (n==0||n==1){

 System.out.println(n+" is not prime number");

 }else{

 for (i=2;i<=m;i++){

 if (n%i==0){

 System.out.println(n+" is not prime number");

 flag=1;

 break;

 }

Java Programming

Dept of CSE,RGMCET Page 58

 }

 if (flag==0) { System.out.println(n+" is prime number"); }

 }//end of else

}

}

Palindrome Program
class PalindromeExample{

 public static void main(String args[]){

 int r,sum=0,temp;

 int n=454;//It is the number variable to be checked for palindrome

 temp=n;

 while(n>0){

 r=n%10; //getting remainder

 sum=(sum*10)+r;

 n=n/10;

 }

 if (temp==sum)

 System.out.println("palindrome number ");

 else

 System.out.println("not palindrome");

}

}

Reverse a number
public class ReverseNumberExample1

{

public static void main(String[] args)

{

int number = 987654, reverse = 0;

while(number != 0)

{

int remainder = number % 10;

reverse = reverse * 10 + remainder;

number = number/10;

}

System.out.println("The reverse of the given number is: " + reverse);

}

}

Java Program to Find Square Root of a Number

Java Programming

Dept of CSE,RGMCET Page 59

import java.util.Scanner;

public class FindSquareRootExample1

{

public static void main(String[] args)

{

System.out.print("Enter a number: ");

//creating object of the Scanner class

Scanner sc = new Scanner(System.in);

//reading a number form the user

int n = sc.nextInt();

//calling the method and prints the result

System.out.println("The square root of "+ n+ " is: "+squareRoot(n));

}

//user-defined method that contains the logic to find the square root

public static double squareRoot(int num)

{

//temporary variable

double t;

double sqrtroot=num/2;

do

{

t=sqrtroot;

sqrtroot=(t+(num/t))/2;

}

while((t-sqrtroot)!= 0);

return sqrtroot;

}

}

Java Program to Find Largest of Three Numbers
import java.util.Scanner;

public class LargestNumberExample1

{

public static void main(String[] args)

{

int a, b, c, largest, temp;

//object of the Scanner class

Scanner sc = new Scanner(System.in);

//reading input from the user

System.out.println("Enter the first number:");

a = sc.nextInt();

Java Programming

Dept of CSE,RGMCET Page 60

System.out.println("Enter the second number:");

b = sc.nextInt();

System.out.println("Enter the third number:");

c = sc.nextInt();

//comparing a and b and storing the largest number in a temp variable

temp=a>b?a:b;

//comparing the temp variable with c and storing the result in the variable

largest=c>temp?c:temp;

//prints the largest number

System.out.println("The largest number is: "+largest);

}

}

Java Program to Display Even Numbers From 1

to 100
public class DisplayEvenNumbersExample1

{

public static void main(String args[])

{

int number=100;

System.out.print("List of even numbers from 1 to "+number+": ");

for (int i=1; i<=number; i++)

{

//logic to check if the number is even or not

//if i%2 is equal to zero, the number is even

if (i%2==0)

{

System.out.print(i + " ");

}

}

}

}

Java Program to Display Odd Numbers From 1

to 100
public class DisplayOddNumbersExample1

{

public static void main(String args[])

{

Java Programming

Dept of CSE,RGMCET Page 61

int number=100;

System.out.print("List of odd numbers from 1 to "+number+": ");

for (int i=1; i<=number; i++)

{

//logic to check if the number is odd or not

//if i%2 is not equal to zero, the number is odd

if (i%2!=0)

{

System.out.print(i + " ");

}

}

}

}

Java Program to Check if a Given Number is

Perfect Square
import java.util.Scanner;

public class CheckPerfectSquareExample1

{

//user-defined method that checks the number is perfect square or not

static boolean checkPerfectSquare(double number)

{

//calculating the square root of the given number

double sqrt=Math.sqrt(number);

//finds the floor value of the square root and comparing it with zero

return ((sqrt - Math.floor(sqrt)) == 0);

}

//main method

public static void main(String[] args)

{

System.out.print("Enter any number: ");

//object of the Scanner class

Scanner sc=new Scanner(System.in);

//reading a number of type double from the user

double number=sc.nextDouble();

//calling the user defined method

if (checkPerfectSquare(number))

System.out.print("Yes, the given number is perfect square.");

else

System.out.print("No, the given number is not perfect square.");

Java Programming

Dept of CSE,RGMCET Page 62

}

}

Jump statements:

1. break.

2. continue.

3. return.

Stmt break continue return

Syntax break; continue; return value_to_be_returned;

Ex for (int i = 0; i < 10; i++) {

 if (i == 4) {

 break;

 }

 s.o.p(i); }

for (int i = 0; i < 10; i++) {

 if (i == 4) {

 continue;

 }

s.o.p(i); }

for (int i = 0; i < 10; i++) {

 if (i == 4) {

 return 23;

 }

 System.out.println(i);

}

Command-line Arguments:

ǒ Arguments are passed at the time of running the program. Input is given through

command prompt.

Example:

Java Programming

Dept of CSE,RGMCET Page 63

class Xyz{

public static void main(String args[]){

 System.out.println(ñEnter any number:ò +args[0]);

 }

}

Compile: javac Xyz.java

run: java Xyz 23

Example:
class Sum {

 public static void main(String ar[]) {

 int x,y,s;

 x=Integer.parseInt(ar[0]);

 y=Integer.parseInt(ar[1]);

 s=x+y;

 System.out.println("sum of " + x + " and " + y +" is " +s); }

}

Compile: javac Sum.java

run: java Sum 23 6

Arrays in Java:

Definition: It is a data structure where we store homogeneous elements as a single unit.

ǒ Elements in array are stored in contiguous memory location.

ǒ In Java array is an object.

Advantages:
1. Code optimization.

Java Programming

Dept of CSE,RGMCET Page 64

2. Random access

Disadvantages:
1. Size limit.

Syntax:

data_type array_name[size]=new [size];

Types of Arrays:
1. Single Dimensional Arrays.

2. Multi Dimensional Arrays.

Single Dimensional Arrays Syntax:
1. dataType[] arr; (or)

2. dataType []arr; (or)

3. dataType arr[];

Ex: int arr[]={1,2,3,6}; //declaration,instantiation,initialization

Multi Dimensional Arrays Syntax:
1. dataType[][] arr; (or)

2. dataType [][]arr; (or)

3. dataType arr[][]; (or)

4. dataType []arr[];

Syntax: data_type array_name[size][size]=new [size][size];

Ex: int a[][]=new int[3][3]; //instantiation

3D Dimensional Arrays Syntax:

dataType[][][] arr;

Syntax:data_type array_name[size][size][size]=new [size][size][size];

Ex: int a[][][]=new int[3][3][3]; //instantiation

Array_name.length : To know the size of an array, we use the ñlengthò property.

Ex:

int a[]=new int[10];

a.length; //size is 10

Java Programming

Dept of CSE,RGMCET Page 65

Jagged Arrays : It is an array of arrays such that member arrays can be of different sizes.

Syntax: data_type array_name[][] = new data_type[n][]; //n: no. of rows

 array_name[] = new data_type[n1] //n1= no. of col in row-1

 array_name[] = new data_type[n2] //n2= no. of col in row-2

 .

 .

 array_name[] = new data_type[nk] //nk=no. of col in row-n

Ways to initialize Jagged Arrays :

1. int arr_name[][] = new int[][] {

 new int[] {10, 20, 30 ,40},

 new int[] {50, 60, 70, 80, 90, 100},

 new int[] {110, 120}

 };

 OR

2. int[][] arr_name = {

 new int[] {10, 20, 30 ,40},

 new int[] {50, 60, 70, 80, 90, 100},

 new int[] {110, 120}};

3. int[][] arr_name = {

 {10, 20, 30 ,40},

 {50, 60, 70, 80, 90, 100},(110,120}};

Java Array
class Testarray{

public static void main(String args[]){

int a[]=new int [5];//declaration and instantiation

a[0]=10;//initialization

a[1]=20;

a[2]=70;

a[3]=40;

a[4]=50;

//traversing array

for (int i=0;i<a.length;i++)//length is the property of array

System.out.println(a[i]);

}}

Java Programming

Dept of CSE,RGMCET Page 66

Output :

10

20

70

40

50

class Testarray1{

public static void main(String args[]){

int a[]={33,3,4,5}; //declaration, instantiation and initialization

//printing array

for (int i=0;i<a.length;i++)//length is the property of array

System.out.println(a[i]);

}}

Output:

33

3

4

5

For-each Loop for Java Array
class Testarray1{

public static void main(String args[]){

int arr[]={33,3,4,5};

//printing array using for-each loop

for (int i:arr)

System.out.println(i);

}}

Output:

33

3

4

5

Example of Multidimensional Java Array
class Testarray3{

public static void main(String args[]){

//declaring and initializing 2D array

